Generating families on Lagrangian cobordisms International Symposium on Natural Sciences at INU

Wenyuan Li

USC

Definition

A contact manifold (Y,ξ) is a (2n + 1)-dimensional manifold with a maximally non-integrable hyperplane distribution ξ . A Legendrian submanifold $\Lambda \subset (Y,\xi)$ is an *n*-dimensional submanifold such that $T\Lambda \subset \xi$.

Definition

A contact manifold (Y,ξ) is a (2n + 1)-dimensional manifold with a maximally non-integrable hyperplane distribution ξ . A Legendrian submanifold $\Lambda \subset (Y,\xi)$ is an *n*-dimensional submanifold such that $T\Lambda \subset \xi$.

Definition

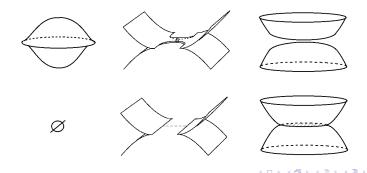
Let $\Lambda_-, \Lambda_+ \subset (Y, \ker \alpha)$ be Legendrian submanifolds. An exact Lagrangian cobordism L from Λ_- to Λ_+ is an exact Lagrangian $L \subset (\mathbb{R}_+ \times Y, d(s\alpha))$, such that

- for s_{-} small, $L \cap (0, s_{-}) \times Y = (0, s_{-}) \times \Lambda_{-}$;
- for s_+ large, $L \cap (s_+, +\infty) \times Y = (s_+, +\infty) \times \Lambda_+;$
- the primitive f_L such that $df_L = s\alpha|_L$ is a constant on $(0, s_-) \times \Lambda_$ and on $(s_+, +\infty) \times \Lambda_+$.

・ 何 ト ・ ヨ ト ・ ヨ ト

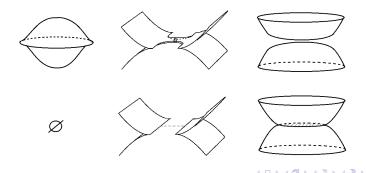
Legendrians and Lagrangian cobordisms

• A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.



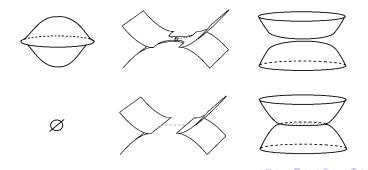
Legendrians and Lagrangian cobordisms

- A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.
- There is a Lagrangian disk filling (0-handle cobordism) of the Legendrian unknotted sphere.

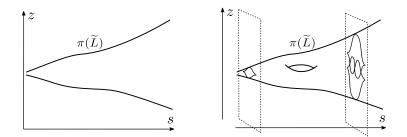


Legendrians and Lagrangian cobordisms

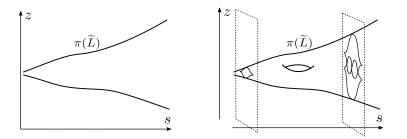
- A Lagrangian cobordism from the empty set to a Legendrian is called a Lagrangian filling.
- There is a Lagrangian disk filling (0-handle cobordism) of the Legendrian unknotted sphere.
- There is a Lagrangian k-handle cobordism 0 ≤ k ≤ dim Λ − 1 (Dimitroglou Rizell '13).



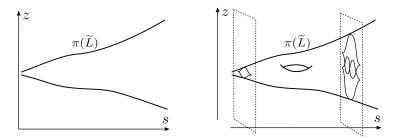
Consider J¹M = T^{*}M × ℝ. The symplectization (ℝ₊ × J¹M) is exact symplectomorphic to T^{*}(M × ℝ₊).



- Consider $J^1M = T^*M \times \mathbb{R}$. The symplectization $(\mathbb{R}_+ \times J^1M)$ is exact symplectomorphic to $T^*(M \times \mathbb{R}_+)$.
- The contactization of the symplectization (ℝ₊ × J¹M) × ℝ is strict contactomorphic to J¹(M × ℝ₊) = T^{*}(M × ℝ₊) × ℝ.



- Consider $J^1M = T^*M \times \mathbb{R}$. The symplectization $(\mathbb{R}_+ \times J^1M)$ is exact symplectomorphic to $T^*(M \times \mathbb{R}_+)$.
- The contactization of the symplectization (ℝ₊ × J¹M) × ℝ is strict contactomorphic to J¹(M × ℝ₊) = T*(M × ℝ₊) × ℝ.
- The exact Lagrangian cobordism L ⊂ ℝ₊ × J¹M ≅ T*(M × ℝ₊) lifts to a Legendrian cobordism in J¹(M × ℝ₊) (with conical boundary conditions, indicating the nonsymmetry).



Wenyuan Li (USC)

• $\Lambda_{j^1f} = \{(x, df(x), f(x)) \mid x \in M\}$ is a simple class of Legendrians in J^1M . The front projection of $\pi(\Lambda_{j^1f}) \subset M \times \mathbb{R}$ is the graph of the function f.

▲ ศ 🛛 ト ▲ 三 ト

- $\Lambda_{j^1f} = \{(x, df(x), f(x)) \mid x \in M\}$ is a simple class of Legendrians in J^1M . The front projection of $\pi(\Lambda_{j^1f}) \subset M \times \mathbb{R}$ is the graph of the function f.
- For general Legendrians in J^1M , we cannot represent them as graphs of functions. Instead we can only view them as multivalued functions.

- $\Lambda_{j^1f} = \{(x, df(x), f(x)) \mid x \in M\}$ is a simple class of Legendrians in J^1M . The front projection of $\pi(\Lambda_{j^1f}) \subset M \times \mathbb{R}$ is the graph of the function f.
- For general Legendrians in J^1M , we cannot represent them as graphs of functions. Instead we can only view them as multivalued functions.
- We can add extra dimensions to M to resolve multivalued functions into genuine functions and then project the graph onto $M \times \mathbb{R}$.

- $\Lambda_{j^1f} = \{(x, df(x), f(x)) \mid x \in M\}$ is a simple class of Legendrians in J^1M . The front projection of $\pi(\Lambda_{j^1f}) \subset M \times \mathbb{R}$ is the graph of the function f.
- For general Legendrians in J^1M , we cannot represent them as graphs of functions. Instead we can only view them as multivalued functions.
- We can add extra dimensions to M to resolve multivalued functions into genuine functions and then project the graph onto $M \times \mathbb{R}$.
- Consider a function $F: M \times \mathbb{R}^N \to \mathbb{R}$.

$$\Lambda_{j^1F} = \{(x, u, \partial_x F, \partial_u F, F) \mid (x, u) \in M \times \mathbb{R}^N\}.$$

We want to project it to $\{(x, \partial_x F, F)\} = \Lambda \subset J^1 M$, but there are too many variables. Therefore, we require $\partial_u F = 0$, so there are only finitely many u values in the preimage.

・ 同下 ・ ヨト ・ ヨト

Definition (Germ of generating families)

Let $U \subset M \times \mathbb{R}^N$ and $F : U \to \mathbb{R}$. Then (U, F) is called a germ of generating families for $\Lambda \subset J^1 M$ if all fiberwise critical points $\partial_u F(x, u) = 0$ are nondegenerate and

 $\Lambda = \{ (x, \partial_x F(x, u), F(x, u)) \mid (x, u) \in U \}.$

Definition (Germ of generating families)

Let $U \subset M \times \mathbb{R}^N$ and $F : U \to \mathbb{R}$. Then (U, F) is called a germ of generating families for $\Lambda \subset J^1 M$ if all fiberwise critical points $\partial_u F(x, u) = 0$ are nondegenerate and

$$\Lambda = \{ (x, \partial_x F(x, u), F(x, u)) \mid (x, u) \in U \}.$$

Definition

Let $F: M \times \mathbb{R}^N \to \mathbb{R}$. Then F is called a generating family (linear at infinity) for $\Lambda \subset J^1 M$ if all fiberwise critical points $\partial_u F(x, u) = 0$ are nondegenerate,

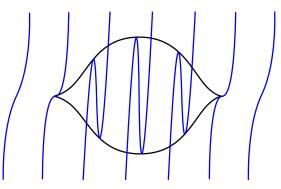
$$\Lambda = \{ (x, \partial_x F(x, u), F(x, u)) \mid (x, u) \in M \times \mathbb{R} \}$$

and $F(x, u) = L_x(u)$ outside a proper subset $K \subset M \times \mathbb{R}^N$ where L_x is a linear function for any $x \in M$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example

There exists a generating function $F : \mathbb{R}_x \times \mathbb{R}_u \to \mathbb{R}$ for the Legendrian unknot in $J^1\mathbb{R}_x$ given by $F(x, u) = u^3 - \rho(x)u$, where $\rho(x)$ is positive in (-1, 1) and negative outside (-1, 1). (Jordan–Traynor '06 proved that it is unique up to stabilizations by extra quadratic factors.)



Theorem (Sabloff–Traynor '13)

Let L be an exact Lagrangian cobordism from Λ_- to Λ_+ in J^1M . Suppose L has a generating family linear at infinity that restricts to f_- and f_+ at the two ends, then there is a long exact sequence between Morse cohomologies

$$\cdots \rightarrow H^k(L, \Lambda_-) \rightarrow HM^k(f_-) \rightarrow HM^k(f_+) \rightarrow \ldots$$

Theorem (Sabloff–Traynor, duality '13)

Let L be an exact Lagrangian cobordism from Λ_- to Λ_+ in J¹M. Suppose L has a generating family linear at infinity that restricts to f_- and f_+ at the two ends, then there is a long exact sequence between Morse (co)homologies

$$\cdots \rightarrow H^k(L, \Lambda_+) \rightarrow HM^k(f_-) \rightarrow HM_{n-k}(f_+) \rightarrow \dots$$

< □ > < □ > < □ > < □ > < □ > < □ >

• **Question:** When can we find a generating family on an exact Lagrangian cobordism?

.

- **Question:** When can we find a generating family on an exact Lagrangian cobordism?
- 1. We know Legendrians that do not have generating families, this will imply that the trivial cobordism of these Legendrians cannot support generating families.

- **Question:** When can we find a generating family on an exact Lagrangian cobordism?
- 1. We know Legendrians that do not have generating families, this will imply that the trivial cobordism of these Legendrians cannot support generating families.
- 2. We hope that generating families on Λ₋ can be extended to L, and hence can be restricted to Λ₊.

- **Question:** When can we find a generating family on an exact Lagrangian cobordism?
- 1. We know Legendrians that do not have generating families, this will imply that the trivial cobordism of these Legendrians cannot support generating families.
- 2. We hope that generating families on Λ₋ can be extended to L, and hence can be restricted to Λ₊.
- The direction goes from Λ₋ to Λ₊ because augmentations of the Legendrian contact dg algebra on Λ₋ induce augmentations on Λ₊, and in microlocal sheaves, sheaves microsupported on Λ₋ induce sheaves microsupported on Λ₊ once the local system data extends.

Theorem (Giroux '88, Latour '91)

 $L \subset J^1M$ supports a germ of generating families if and only if the Lagrangian Gauss map $L \to U/O$ is null homotopic. Moreover, germs of generating families on L up to local diffeomorphisms and stabilization by quadratic forms are classified by homotopy classes of the null homotopies, i.e., homotopy classes $L \to \Omega(U/O) \xrightarrow{\sim} \mathbb{Z} \times BO$.

Corollary (extension of germs of generating families)

For $L \subset J^1M$ and $L_0 \subset L$ an open submanifold (with smooth boundary), a germ of generating families on L_0 extends to L if and only if $L \to U/O$ is null homotopic, and the given null homotopy of $L_0 \to U/O$ extends to L. (Note that no directionality is involved.)

くロト く伺 ト くきト くきト

Theorem (L., extension of generating families linear at infinity)

For $L \subset J^1M$ a Legendrian cobordism from Λ_- to Λ_+ with no Reeb chords, a generating family linear at infinity on Λ_- extends to L (and then restricts to Λ_+) if and only if $L \to U/O$ is null homotopic, and the given null homotopy of $\Lambda_- \to U/O$ extends to L.

Theorem (L., extension of generating families linear at infinity)

For $L \subset J^1M$ a Legendrian cobordism from Λ_- to Λ_+ with no Reeb chords, a generating family linear at infinity on Λ_- extends to L (and then restricts to Λ_+) if and only if $L \to U/O$ is null homotopic, and the given null homotopy of $\Lambda_- \to U/O$ extends to L.

Remark

1. A generating family linear at infinity can always be extended to an exact Lagrangian concordance.

2. A Lagrangian filling of Legendrian in J^1M with trivial Lagrangian Gauss map always induces a generating family linear at infinity.

3. For Legendrian knots and Lagrangian surface cobordisms, the condition is reduced to (1) the Maslov class of L vanishes and (2) the Maslov potential on Λ_{-} extends to L.

くロト く伺 ト くきト くきト

• We list some of the known constructions for generating functions for Lagrangian/Legendrian submanifolds in the literature:

- We list some of the known constructions for generating functions for Lagrangian/Legendrian submanifolds in the literature:
- 1. Graphical Lagrangian sections and subgraphical Lagrangians (Eliashberg–Gromov '98);

- We list some of the known constructions for generating functions for Lagrangian/Legendrian submanifolds in the literature:
- 1. Graphical Lagrangian sections and subgraphical Lagrangians (Eliashberg–Gromov '98);
- 2. Lagrangians Hamiltonian isotopic to graphical or subgraphical Lagrangians (Sikorav '86, Viterbo '92, Chaperon '95, Chekanov '96, Eliashberg–Gromov '98, Théret '99).

- We list some of the known constructions for generating functions for Lagrangian/Legendrian submanifolds in the literature:
- 1. Graphical Lagrangian sections and subgraphical Lagrangians (Eliashberg–Gromov '98);
- 2. Lagrangians Hamiltonian isotopic to graphical or subgraphical Lagrangians (Sikorav '86, Viterbo '92, Chaperon '95, Chekanov '96, Eliashberg–Gromov '98, Théret '99).
- 3. Nearby Lagrangians in T*M with trivial Lagrangian Gauss map (Abouzaid-Courte-Guillermou-Kragh '21), and nearby Lagrangians in T*Sⁿ and in particular Lagrangian fillings of the standard Legendrian unknot (Kragh '13, Abouzaid-Courte-Guillermou-Kragh '21);

- We list some of the known constructions for generating functions for Lagrangian/Legendrian submanifolds in the literature:
- 1. Graphical Lagrangian sections and subgraphical Lagrangians (Eliashberg–Gromov '98);
- 2. Lagrangians Hamiltonian isotopic to graphical or subgraphical Lagrangians (Sikorav '86, Viterbo '92, Chaperon '95, Chekanov '96, Eliashberg–Gromov '98, Théret '99).
- 3. Nearby Lagrangians in T*M with trivial Lagrangian Gauss map (Abouzaid-Courte-Guillermou-Kragh '21), and nearby Lagrangians in T*Sⁿ and in particular Lagrangian fillings of the standard Legendrian unknot (Kragh '13, Abouzaid-Courte-Guillermou-Kragh '21);
- 4. Lagrangian concordances induced by Legendrian isotopies and certain Lagrangian handle attachments (compatible with a given one at the negative end), and certain examples of immersed Lagrangian cobordisms (Bourgeois–Sabloff–Traynor '15, Pezzimenti '18).

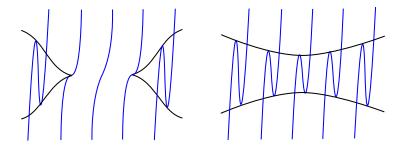
< 回 > < 回 > < 回 >

• We explain the homotopical obstruction $L \to \Omega(U/O) \xrightarrow{\sim} \mathbb{Z} \times BO$ from the Morse–Cerf theory perspective.

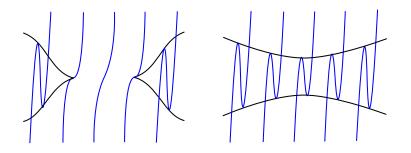


< 円

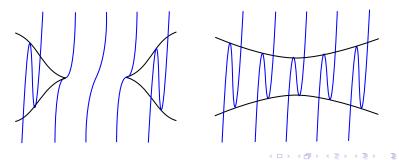
- We explain the homotopical obstruction $L \to \Omega(U/O) \xrightarrow{\sim} \mathbb{Z} \times BO$ from the Morse–Cerf theory perspective.
- Suppose we want to extend generating families on an S^{k-1}-family of cusps to the interior D^k in the front projection when preforming Lagrangian k-handle attachment. We need to introduce a cancelling pair of critical points which is joined to the cancelling pair on the S^{k-1}-family of cusps.



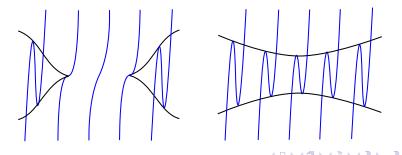
• When k = 1, $S^{k-1} = S^0$ and $D^k = D^1$, the obstruction is the Morse index of the pair of critical points near the two cusps, living in \mathbb{Z} .



- When k = 1, S^{k-1} = S⁰ and D^k = D¹, the obstruction is the Morse index of the pair of critical points near the two cusps, living in Z.
- When k ≥ 2, Cerf '70 and Hatcher–Wagoner '73 explained that there is a higher obstruction. A cancelling pair of critical points determines a vector space in ℝ[∞] by taking the negative eigenspace of the Hessian. We thus have an S^{k-1}-family of vector spaces in ℝ[∞].



- When k = 1, S^{k-1} = S⁰ and D^k = D¹, the obstruction is the Morse index of the pair of critical points near the two cusps, living in Z.
- When k ≥ 2, Cerf '70 and Hatcher–Wagoner '73 explained that there is a higher obstruction. A cancelling pair of critical points determines a vector space in ℝ[∞] by taking the negative eigenspace of the Hessian. We thus have an S^{k-1}-family of vector spaces in ℝ[∞].
- In order to extend the S^{k-1}-family of cancelling pairs to D^k, the S^{k-1}-family of vector spaces in ℝ[∞] should be trivial. This is an obstruction in [S^{k-1}, Gr(ℝ[∞], ℝ[∞])] = [S^{k-1}, BO].



Definition

Let $\Lambda \subset J^1 M \subset T^{*,\infty}(M \times \mathbb{R})$ be a Legendrian. $Sh_{\Lambda}(M \times \mathbb{R})$ is the dg derived category of sheaves (values in chain complexes) with singular support on Λ . (In particular, such sheaves are locally constant with respect to the stratification of the front projection $\pi(\Lambda) \subset M \times \mathbb{R}$.)

Definition

Let $\Lambda \subset J^1 M \subset T^{*,\infty}(M \times \mathbb{R})$ be a Legendrian. $Sh_{\Lambda}(M \times \mathbb{R})$ is the dg derived category of sheaves (values in chain complexes) with singular support on Λ . (In particular, such sheaves are locally constant with respect to the stratification of the front projection $\pi(\Lambda) \subset M \times \mathbb{R}$.)

Theorem (L. extension of construtible sheaves)

For $L \subset J^1M$ a Legendrian cobordism from Λ_- to Λ_+ with no Reeb chords, a sheaf in $Sh_{\Lambda_-}(M \times \mathbb{R})$ extends to $Sh_L(M \times \mathbb{R}_+ \times \mathbb{R})$ if and only if L is equipped with Maslov data (the Maslov class and relative second Stiefel–Whitney class vanishes) and the given microlocal monodromy data in Loc(Λ_-) extends to Loc(L). More precisely, there is an equivalence

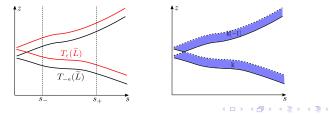
 $Sh_{\Lambda_{-}}(M \times \mathbb{R})_{0} \times_{Loc(\Lambda_{-})} Loc(L) \simeq Sh_{L}(M \times \mathbb{R}_{+} \times \mathbb{R})_{0}.$

3

イロト 不得 トイヨト イヨト

Strategy of the proof

• First, starting from a germ of generating families (a microlocal local system) and a generating family (a sheaf) at the negative end that is compatible, we construct a generating family (a sheaf) on the doubling given by *L* and a small Reeb pushoff of *L*.

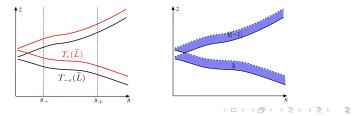


Wenyuan Li (USC)

Generating families on Lagrangian cobordisms

Strategy of the proof

- First, starting from a germ of generating families (a microlocal local system) and a generating family (a sheaf) at the negative end that is compatible, we construct a generating family (a sheaf) on the doubling given by *L* and a small Reeb pushoff of *L*.
- Second, using a Hamiltonian isotopy, we push the small Reeb pushoff of L to a large Reeb pushoff of L. Generating families (sheaves) are known to propagate.

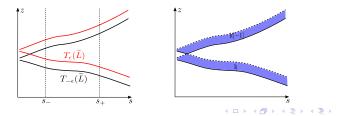


Wenyuan Li (USC)

Generating families on Lagrangian cobordisms

Strategy of the proof

- First, starting from a germ of generating families (a microlocal local system) and a generating family (a sheaf) at the negative end that is compatible, we construct a generating family (a sheaf) on the doubling given by *L* and a small Reeb pushoff of *L*.
- Second, using a Hamiltonian isotopy, we push the small Reeb pushoff of L to a large Reeb pushoff of L. Generating families (sheaves) are known to propagate.
- Finally, for a sufficiently large Reeb pushoff, the two copies of the front projections of *L* become separate. We can then cut off the generating family (sheaf) at a certain height.



Thank you!

æ

イロト イヨト イヨト イヨト